首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22189篇
  免费   2832篇
  国内免费   2009篇
化学   13429篇
晶体学   554篇
力学   1197篇
综合类   111篇
数学   766篇
物理学   10973篇
  2024年   57篇
  2023年   210篇
  2022年   353篇
  2021年   515篇
  2020年   721篇
  2019年   661篇
  2018年   660篇
  2017年   846篇
  2016年   1079篇
  2015年   970篇
  2014年   1186篇
  2013年   2156篇
  2012年   1491篇
  2011年   1773篇
  2010年   1310篇
  2009年   1553篇
  2008年   1456篇
  2007年   1531篇
  2006年   1307篇
  2005年   1044篇
  2004年   964篇
  2003年   836篇
  2002年   945篇
  2001年   557篇
  2000年   445篇
  1999年   357篇
  1998年   322篇
  1997年   222篇
  1996年   208篇
  1995年   206篇
  1994年   199篇
  1993年   136篇
  1992年   149篇
  1991年   77篇
  1990年   65篇
  1989年   47篇
  1988年   59篇
  1987年   50篇
  1986年   43篇
  1985年   38篇
  1984年   51篇
  1983年   20篇
  1982年   36篇
  1981年   29篇
  1980年   13篇
  1979年   21篇
  1978年   13篇
  1977年   11篇
  1974年   8篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
71.
The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications.  相似文献   
72.
π-Extended molecules are key components for the development of materials science. In fact, polyaromatic structures are fundamental for the scientific and technological progress of fields such as organic electronics and bio-applications. Beneficial properties of π-extended structures are absorption in the visible region, often luminescence, high electron mobilities and stability. Common approaches to adjust the properties of polyaromatic structures to functional setups involve changes in shape and size at the molecular level. Recently, incorporating hetero-elements emerged as successful approach. In this regard, organophosphorus conjugated molecules are new materials holding great promise for potential applications. In this review, we comprehensively discuss the design/development of polyaromatic phosphorus materials and their applicability. We establish structure/property/applicability relationships to provide key guidelines for the engineering of newer, future applications. This article thus provides a source of information for the further development of this rapidly evolving field of research.  相似文献   
73.
The curing of epoxidized linseed oil (ELO) with three different bio-based dicarboxylic acids (sebacic acid, suberic acid, and succinic acid) has been investigated. No accelerators or catalysts were used and the resulting thermosets are 100% bio-based. Structural investigations of the three crosslinked ELO resins were made using FTIR spectroscopy and TMA, that is, tensile tests, TGA, and DMA. As evidenced by FTIR measurements ELO and dicarboxylic acids reacts but no major differences can be distinguished between the dicarboxylic acids. Non-isothermal curing has been conducted by rheological and DSC measurements. Advanced isoconversional analysis applied to DSC data in association with the complex viscosity variations gives new insights into the polymerization mechanism. The length of dicarboxylic acid carbon chain modifies the reaction rate. Then, a correlation between reaction rate, activation energy, pre-exponential factors, polymerization mechanism, and change in rate-limiting step was shown. DMA and tensile tests highlight the relationship between the carbon chain length, reactivity, and thermomechanical properties. The use of succinic acid allows reaching a higher Tg and thermal stability.  相似文献   
74.
The recent global pandemic and its tremendous effect on the price fluctuations of crude oil illustrates the side effects of petroleum dependency more evident than ever. Over the past decades, both academic and industrial communities spared endless efforts in order to replace petroleum-based materials with bio-derived resources. In the current study, a series of shape memory polymer composites (SMPC's) was synthesized from epoxidized vegetable oils, namely canola oil and castor oil fatty acids (COFA's) as a 100% bio-based polyol and isophorone diisocyanate (IPDI) as an isocyanate using a solvent/catalyst-free method in order to eventuate polyurethanes (PU's). Thereafter, graphene oxide (GO) nanoplatelets were synthesized and embedded in the neat PU in order to overcome the thermomechanical drawbacks of the neat matrix. The chemical structure of the synthesized components, as well as the dispersion and distribution levels of the nanoparticles, was characterized. In the following, thermal and mechanical properties as well as shape memory behavior of the specimens were comprehensively investigated. Likewise, the thermal conductivity was determined. This study proves that synthesized PU's based on vegetable oil polyols, including graphene nanoparticles, exhibit proper thermal and mechanical properties, which make them stand as a potential candidate to compete with traditional petroleum-based SMPC's.  相似文献   
75.
β-Diketonates, such as acetylacetonate, are amongst the most common bidentate ligands towards elements across the entire periodic table and are considered wholly redox-inactive in their complexes. Herein we show that complexation of 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac) to CrII spontaneously affords CrIII and a reduced β-diketonate radical ligand scaffold, as evidenced by crystallographic analysis, magnetic measurements, optical spectroscopy, reactivity studies, and DFT calculations. The possibility of harnessing β-diketonates as electron reservoirs opens up possibilities for new metal–ligand concerted reactivity in the ubiquitous β-diketonate coordination chemistry.  相似文献   
76.
A triplet ground-state diradical molecule, bis(nitronyl nitroxide)-substituted diphenyldihydrophenazine ( 1 ..), that can be converted into a one-electron oxidized species, 1 … + , in the quartet ground state has been developed. Surprisingly, these species, 1 .. and 1 … + , can be used under ambient conditions because they are reasonably stable under aerobic conditions, even in solution. The temperature-dependent magnetic susceptibilities reveal that 1 .. and 1 … + are in the triplet state, with a weak exchange interaction (J1/kB = +3.1 K) and quartet ground state with a strong exchange interaction (J2/kB = +160 K), respectively. The interconversion between the neutral and one-electron oxidized species can be realized through electrochemical reactions. Significantly different absorption bands in the near-IR region newly appeared in the electronic spectra acquired during electrochemical oxidation/reduction.  相似文献   
77.
Gd3+ complexes have been shown to undergo unusual slow magnetic relaxation processes similar to those of single-molecule magnets (SMMs), even though Gd3+ does not exhibit strong magnetic anisotropy. To reveal the origin of the slow magnetic relaxation of Gd3+ complexes, we have investigated the magnetic properties and heat capacities of two Gd3+-phthalocyaninato triple-decker complexes, one of which has intramolecular Gd3+–Gd3+ interactions and the other does not. It was found that the Gd3+–Gd3+ interactions accelerate the magnetic relaxation processes. In addition, magnetically diluted samples, prepared by doping a small amount of the Gd3+ complexes into a large amount of diamagnetic Y3+ complexes, underwent dual magnetic relaxation processes. A detailed dynamic magnetic analysis revealed that the coexistence of spin–lattice relaxation and phonon-bottleneck processes is the origin of the dual magnetic relaxation processes.  相似文献   
78.
Graphene oxide (GO)-grafted nanosupramolecules have recently emerged as neoteric nano drug carriers in the therapy of refractory diseases. Herein, a multicomponent nanosupramolecular drug carrier based on a targeted peptide and magnetic GO is reported, the drug-release behavior of which can be regulated by an alternating magnetic field (AMF). This multicomponent nanosupramolecular carrier is composed of β-cyclodextrin (β-CD)/nickel nanoparticle-modified graphene oxide (GONiCD) and mitochondrial ion-targeting peptide (MitP)-grafted hyaluronic acid (HAMitP). Owing to the host–guest interaction between β-cyclodextrin and the cyclohexyl groups on MitP, GONiCD and HAMitP could form supramolecular assemblies during the doxorubicin (Dox) loading process, which not only remarkably enhances the drug-loading capacity, but also improves the drug-release efficiency under AMF stimulus. During co-incubation with tumor cells, the Dox-loaded assemblies could strongly target the tumor mitochondria and damage both the mitochondria and the nuclei, owing to Dox release from the assemblies induced by AMF. This study sheds light on the exploration of peptide caps for controlled drug loading/release of supramolecular nanocarriers for efficient drug delivery and anticancer therapy.  相似文献   
79.
《Mendeleev Communications》2020,30(4):462-464
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号